Trigonometric function

1

In the coordinate plane with point O as the origin, take the positive part of the *x*-axis as the starting line and illustrate the radius of motion OP rotated by the following angle. Also, express the general angle θ represented by the radius of motion OP in the form $\theta = \alpha + 360^{\circ} \times n$ ($0^{\circ} \le \alpha < 360^{\circ}$, *n* is an integer), and answer in what quadrant the angle is.

(1) 800°

 $(2) -200^{\circ}$

- 2 Rewrite the following angles in degrees to arc degrees and arc degrees to degrees, respectively.
- (1) 135°
- (2) -108°
- $(3) \quad \frac{\pi}{2}$

(4) $-\frac{13}{10}\pi$

Find the arc length l and area S of a fan shape whose radius is 9 and whose central angle is $\frac{2}{3}\pi$.

 $(1) \quad \frac{5}{3}\pi$

 $(2) \quad -\frac{3}{4}\pi$

If θ is an angle in the fourth quadrant and $\cos\theta = \frac{1}{3}$, find the values of $\sin\theta$ and $\tan\theta$, respectively.

When $\sin \theta + \cos \theta = \frac{1}{2}$, find the value of the following expression.

(1) $\sin\theta\cos\theta$

(2) $\sin^3\theta + \cos^3\theta$

7 Find the following values.

$$(1) \quad \sin\frac{100}{3}\pi$$

(2)
$$\tan\left(-\frac{3}{4}\pi\right)$$

$$(3) \quad \sin\frac{3}{10}\pi + \cos\frac{4}{5}\pi$$

- (1) Graph the following functions. Find its period.
- ② $y = \tan 2\theta$
- (2) For the functions ① through ③ in (1), answer which are even functions and which are odd functions, respectively.

- 9 Solve the following equations and inequalities for $0 \le \theta < 2\pi$.
- $(1) \quad \sin \theta = -\frac{1}{\sqrt{2}}$

 $(2) \quad \cos \theta > \frac{1}{2}$

1 0

- (1) Solve the equation $2\sin\left(\theta \frac{\pi}{6}\right) = -\sqrt{3}$ for $0 \le \theta < 2\pi$.
- (2) Solve the following equations and inequalities for $0 \le \theta \le 2\pi$.
 - ① $2\sin^2\theta + 3\cos\theta 3 = 0$

 $2\sin^2\theta + 3\cos\theta - 3 \ge 0$

1 1

Find the maximum and minimum values of the function $y = \sin^2\theta + \cos\theta$ when $0 \le \theta < 2\pi$.

Also, find the value of θ at that time.

1 2 Find the following values.

(1) $\sin 15^{\circ}$

(2) cos 195°

(3) $\tan \frac{5}{12}\pi$

1 3

 $0<\alpha<\frac{\pi}{2},\ \ \pi<\beta<\frac{3}{2}\pi$ and $\cos\alpha=\frac{12}{13},\ \ \sin\beta=-\frac{3}{5}$, find the following values.

(1) $\sin(\alpha - \beta)$

(2) $\cos(\alpha - \beta)$

1 4

Find the acute angle θ formed by the two lines y=5x and 2x=3y.

1 5

Find the values of $\sin 2\alpha$, $\cos 2\alpha$, and $\tan 2\alpha$ when $\frac{\pi}{2} < \alpha < \pi$ and $\sin \alpha = \frac{1}{4}$.

1 6

Find the values of $\sin\frac{\alpha}{2}$, $\cos\frac{\alpha}{2}$, and $\tan\frac{\alpha}{2}$ when $\frac{3}{2}\pi < \alpha < 2\pi$ and $\sin\alpha = -\frac{4}{5}$.

1 7 Solve the following equations and inequalities for $0 \le \theta < 2\pi$.

$$\frac{1}{(1)} \sin 2\theta = -\sqrt{2}\cos \theta$$

(2)
$$\cos 2\theta < 3\cos \theta + 1$$

18 Transform the following equation into the form $r\sin(\theta+\alpha)$. However, r>0 and $-\pi < \alpha \le \pi$.

(1)
$$-\sin\theta + \cos\theta$$

(2)
$$\sqrt{3}\sin\theta - 3\cos\theta$$

- 1 9 Solve the following equations and inequalities for $0 \le \theta < 2\pi$.
- $(1) \quad \sin \theta \sqrt{3} \cos \theta 1 = 0$
- $(2) \quad \sqrt{2}\sin\theta + \sqrt{2}\cos\theta \le -\sqrt{3}$

2 0

Find the maximum and minimum values of the function $y = \sqrt{3} \sin \theta + \cos \theta - 1$ when $0 \le \theta < 2\pi$. Also, find the value of θ at that time.

Study 1

If the equation $\sin^2\theta + \cos\theta - a = 0$ has three solutions with $0 \le \theta < 2\pi$, find the value of the constant a.

Study 2 Find the following values.

(1) sin 105° cos 15°

(2) cos 15° cos 75°

(3) $\sin 15^{\circ} + \sin 75^{\circ}$

(4) $\cos 15^{\circ} - \cos 105^{\circ}$

Study 3 When $0 \le \theta < 2\pi$, answer the following questions.

(1) Find the maximum and minimum values of the function $y = \sin\theta\cos\theta - \sqrt{3}\sin^2\theta$.

Also, find the value of θ at that time.

(2) Find the maximum and minimum values of the function $y = \sin 2\theta - 2\sin \theta + 2\cos \theta$.

Also, find the value of θ at that time.