Quadratic function

1

If the functions f(x) and g(x) are f(x) = 3x - 1 and $g(x) = -2x^2 + 4x$, find the following values.

(1) f(0)

(2) $f\left(-\frac{1}{3}\right)$

(3) f(3a)

(4) g(2)

(5) $g\left(\frac{1}{2}\right)$

(6) g(a-1)

solution

From f(x) = 3x - 1

(1) $f(0)=3 \cdot 0-1=-1$

(2)
$$f\left(-\frac{1}{3}\right) = 3 \cdot \left(-\frac{1}{3}\right) - 1 = -1 - 1 = -2$$

(3) $f(3a)=3 \cdot 3a-1=9a-1$

From $g(x) = -2x^2 + 4x$

(4) $g(2) = -2 \cdot 2^2 + 4 \cdot 2 = -8 + 8 = 0$

(5)
$$g\left(\frac{1}{2}\right) = -2 \cdot \left(\frac{1}{2}\right)^2 + 4 \cdot \frac{1}{2} = -\frac{1}{2} + 2 = \frac{-1+4}{2} = \frac{3}{2}$$

(6)
$$g(a-1) = -2(a-1)^2 + 4(a-1) = -2(a^2 - 2a + 1) + 4a - 4 = -2a^2 + 4a - 2 + 4a - 4 = -2a^2 + 8a - 6$$

Find the value range of the following function.

(1)
$$y=3x+1$$
 $(-2 \le x \le 0)$

(2)
$$y = -\frac{1}{3}x - 2 \quad (-3 \le x \le 1)$$

solution

(1)
$$y=3x+1$$
 $(-2 \le x \le 0)$

The graph of the above function is shown in the figure on the right.

Therefore, the value range is

$$-5 \le y \le 1$$
.

(2)
$$y = -\frac{1}{3}x - 2 \quad (-3 \le x \le 1)$$

The graph of the above function is shown in the figure on the right.

Therefore, the value range is

$$-\frac{7}{3} \leq y \leq -1.$$

Answer how the graphs of the following quadratic functions are each parallel shifts of the graph of the quadratic function $y=2x^2$. Sketch the graph of each and find its axis and vertex.

(1)
$$y=2x^2-1$$

(2)
$$y=2(x-2)^2$$

(3)
$$y=2(x+1)^2-3$$

solution

(1) The parabola $y=2x^2-1$ is the parabola $y=2x^2$ shifted parallel along the y-axis direction by -1. The axis is the straight line x=0 (y-axis), the vertex is (0, -1), and the graph is shown in the figure on the right.

(2) The parabola $y=2(x-2)^2$ is the parabola $y=2x^2$ shifted parallel along the x-axis direction by 2. The axis is the straight line x=2, the vertex is (2,0), and the graph is shown in the figure on the right.

(3) The parabola $y=2(x+1)^2-3$ is expressed as parabola $y=2\{x-(-1)\}^2-3$, which means that the parabola $y=2x^2$ is shifted parallel along the x-axis direction by -1 and along the y-axis direction by -3.

The axis is the straight line x=-1, the vertex is (-1, -3), and the graph is shown in the figure on the right.

(1) Sketch the quadratic function $y = -3x^2 - 2x + 1$ and find its axis and vertex.

(2) When the vertices of two parabolas $y = x^2 - 8x$ and $y = -\frac{1}{2}x^2 + ax - 3b$ coincide,

find the values of the constants a and b.

solution

(1)
$$y = -3x^2 - 2x + 1 = -3\left(x^2 + \frac{2}{3}x\right) + 1 = -3\left(x^2 + \frac{2}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

$$= -3\left\{\left(x + \frac{1}{3}\right)^2 - \frac{1}{9}\right\} + 1 = -3\left(x + \frac{1}{3}\right)^2 + \frac{1}{3} + 1$$

$$= -3\left(x + \frac{1}{3}\right)^2 + \frac{4}{3}$$

The axis is the line $x = -\frac{1}{3}$, the vertex is $\left(-\frac{1}{3}, \frac{4}{3}\right)$.

The graph is shown in the figure on the right.

(2)
$$y=x^2-8x=x^2-8x+16-16=(x-4)^2-16$$
 Therefore, the vertex is $(4, -16)$.

$$y = -\frac{1}{2}x^2 + ax - 3b = -\frac{1}{2}(x^2 - 2ax) - 3b = -\frac{1}{2}(x^2 - 2ax + a^2 - a^2) - 3b$$

$$= -\frac{1}{2}\{(x-a)^2 - a^2\} - 3b = -\frac{1}{2}(x-a)^2 + \frac{1}{2}a^2 - 3b$$

Therefore, since the vertex is $\left(a, \frac{1}{2}a^2 - 3b\right)$.

$$\begin{cases} 4 = a & \cdots \\ -16 = \frac{1}{2}a^2 - 3b & \cdots \end{aligned}$$

Substituting ① into ②, we get $-16 = \frac{1}{2} \cdot 4^2 - 3b = 8 - 3b$. Solve this and we get b = 8.

Therefore a=4, b=8.

- (1) How much parallel shift of the parabola $y = -2x^2 14x 13$ will overlap the parabola $y = -2x^2 + 8x + 7$?
- (2) When the graph of the quadratic function $y=x^2+ax+4$ is translated by 2 along the x-axis direction to form the graph of the quadratic function $y=x^2-9x+b$, find the values of the constants a and b.
- (3) Fill in the following blanks.

The graph of the quadratic function $y=x^2$ was translated by (a) along the x-axis direction and translated by (b) along the y-axis direction, and then symmetrically shifted with respect to (c), yields the graph of the quadratic function $y=-x^2-2x-2$.

solution

(1)
$$y = -2x^2 - 14x - 13 = -2(x^2 + 7x) - 13 = -2\left(x^2 + 7x + \frac{49}{4} - \frac{49}{4}\right) - 13$$

 $= -2\left\{\left(x + \frac{7}{2}\right)^2 - \frac{49}{4}\right\} - 13 = -2\left(x + \frac{7}{2}\right)^2 + \frac{49}{2} - 13$
 $= -2\left(x + \frac{7}{2}\right)^2 + \frac{23}{2}$, so the vertex is $\left(-\frac{7}{2}, \frac{23}{2}\right)$.
 $y = -2x^2 + 8x + 7 = -2(x^2 - 4x) + 7 = -2(x^2 - 4x + 4 - 4) + 7$
 $= -2\{(x - 2)^2 - 4\} + 7 = -2(x - 2)^2 + 8 + 7 = -2(x - 2)^2 + 15$, so the vertex is $(2, 15)$.

Therefore, $\frac{11}{2}$ in the *x*-axis direction

and $\frac{7}{2}$ parallel shift in the y-axis direction will result in overlap.

(2)
$$y = x^2 + ax + 4 = \left(x + \frac{a}{2}\right)^2 - \frac{a^2}{4} + 4$$
, so the vertex is $\left(-\frac{a}{2}, -\frac{a^2}{4} + 4\right)$.
 $y = x^2 - 9x + b = \left(x - \frac{9}{2}\right)^2 - \frac{81}{4} + b$, so the vertex is $\left(\frac{9}{2}, -\frac{81}{4} + b\right)$.

From the coordinates of each vertex, we get $\begin{cases} -\frac{a}{2} + 2 = \frac{9}{2} & \cdots \\ -\frac{a^2}{4} + 4 = -\frac{81}{4} + b & \cdots \end{cases}$

From ①, $-\frac{a}{2} = \frac{5}{2}$, therefore a = -5.

Substituting a = -5 for ②, $-\frac{(-5)^2}{4} + 4 = -\frac{81}{4} + b$. From this, $b = -\frac{25}{4} + 4 + \frac{81}{4} = 18$.

From the above, a=-5, b=18.

(3) $y=-x^2-2x-2=-(x^2+2x)-2=-\{(x+1)^2-1\}-2=-(x+1)^2+1-2=-(x+1)^2-1$ and so the vertex is (-1, -1).

Thus, if the graph of the quadratic function $y=x^2$ is translated along the x-axis direction by (a) -1 and along the y-axis direction by (b) 1, and then symmetrically shifted about the (c) x-axis, the expression for the graph becomes $y=-x^2-2x-2$.

 $\langle \text{Note} \rangle$ (a) 1, (b) 1, and (c) origin are also correct. (a) 1, (b) -1, and (c) y-axis are incorrect because the direction of the graph must be opposite.

- (1) Find the maximum and minimum values of the function $y=x^2+x+2$ ($-1 \le x \le 1$).
- (2) Find the minimum value of the function $y=x^2-4x$ ($a \le x \le a+1$) with constant a in the following three cases.
 - \bigcirc a < 1

② $1 \le a \le 2$

3 2 < a

solution

(1)
$$y = x^2 + x + 2 = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} + 2$$

= $\left(x + \frac{1}{2}\right)^2 + \frac{7}{4}$

Since the domain of definition is $-1 \le x \le 1$,

from the graph on the right,

the maximum value is 4 when x=1,

and the minimum value is $\frac{7}{4}$ when $x = -\frac{1}{2}$.

(2)
$$y=x^2-4x=(x-2)^2-4$$
 $(a \le x \le a+1)$

This graph is convex at the bottom, has a fixed vertex, and the domain of definition moves.

① When a < 1

The axis is x=2 and a+1<2 when a<1, so the axis is right-outer the domain of definition $a \le x \le a+1$.

Therefore, it is minimum at x=a+1, and the minimum value is

$$(a+1)^2 - 4(a+1) = a^2 + 2a + 1 - 4a - 4$$

= $a^2 - 2a - 3$.

② When $1 \le a \le 2$

Substituting the axis x=2 into the domain of definition $a \le x \le a+1$, so $a \le 2 \le a+1$.

That is, from $\begin{cases} a \leq 2 \\ 2 \leq a+1 \end{cases}$, we obtain $1 \leq a \leq 2$.

Therefore, the axis x=2 is inside the domain of definition $a \le x \le a+1$.

Therefore, it is minimum is at x=2, and the minimum value is -4.

 \bigcirc When 2 < a

The axis x=2 is outside the left of the domain of definition $a \le x \le a+1$.

Therefore, it is minimum at x=a, and the minimum value is a^2-4a .

Find a quadratic function that satisfies the following conditions.

- (1) Through 3 points (2, 0), (1, 1), (3, 5).
- (2) Tangent to the x-axis and passing through two points (1, 1) and (4, 4).

solution

(1) Substitute x=2, y=0 and x=1, y=1 and x=3, y=5 for $y=ax^2+bx+c$ to form a simultaneous equation.

$$\begin{cases} 0 = 4a + 2b + c & \cdots & \text{ } \\ 1 = a + b + c & \cdots & \text{ } \\ 5 = 9a + 3b + c & \cdots & \text{ } \end{cases}.$$

From ①-②, ③-①

 $\begin{cases} -1 = 3a + b \\ 5 = 5a + b \end{cases}$ Solving this simultaneous equation yields a = 3, b = -10.

Substituting a=3 and b=-10 for ②, we obtain c=8.

From the above, $y=3x^2-10x+8$.

(2) If it is tangent to the x-axis, the y-coordinate of the vertex is 0.

Therefore, the quadratic function to be obtained can be expressed as

$$v=a(x-p)^2$$
.

Substitute x=1, y=1 and x=4, y=4 into this to form a simultaneous equation.

$$\begin{cases} 1 = a(1-p)^2 & \cdots \\ 4 = a(4-p)^2 & \cdots \end{cases}$$

Expanding the right- hand side, we get $\begin{cases} 1 = a - 2ap + ap^2 & \cdots & 1 \\ 4 = 16a - 8ap + ap^2 & \cdots & 2 \end{cases}$

From ②'
$$-$$
①' $3=15a-6ap$
 $1=5a-2ap$

$$a(5-2p) = 1$$
 and $5-2p \neq 0$, so $a = \frac{1}{5-2p}$.

Substituting this into ①, $1 = \frac{1}{5 - 2p} (1 - p)^2$.

Since $5-2p \neq 0$, multiplying both sides by 5-2p, $5-2p=1-2p+p^2$.

To summarize, we have $p^2-4=0$. Solving for this, $p=\pm 2$.

When p = 2, we have a = 1 from ①. When p = -2, we have $a = \frac{1}{9}$ from ①.

Therefore $y = (x-2)^2$, $y = \frac{1}{9}(x+2)^2$, that is $y = x^2 - 4x + 4$, $y = \frac{1}{9}x^2 + \frac{4}{9}x + \frac{4}{9}$.

Solve the following quadratic equations.

(1)
$$x^2 - 10x + 24 = 0$$

(2)
$$14x^2 + 29x - 15 = 0$$

(3)
$$x^2 + 5x + 5 = 0$$

(4)
$$x^2 - 6x - 6 = 0$$

solution

(1) $x^2 - 10x + 24 = 0$

Factorize the left-hand side to get (x-4)(x-6)=0.

Therefore, x-4=0 or x-6=0.

Thus, x=4, 6.

(2) $14x^2 + 29x - 15 = 0$

Factorize the left-hand side to get

$$(2x+5)(7x-3)=0.$$

Therefore, 2x+5=0 or 7x-3=0.

Thus,
$$x = -\frac{5}{2}, \frac{3}{7}$$
.

(3)
$$x^2 + 5x + 5 = 0$$

By the solution formula of quadratic equation we obtain $x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} = \frac{-5 \pm \sqrt{5}}{2}$.

(4)
$$x^2-6x-6=0$$

This quadratic equation can be viewed as $x^2+2 \cdot (-3)x-6=0$, so

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 1 \cdot (-6)}}{1} = 3 \pm \sqrt{15}.$$

(1) Find the number of real solutions to the following quadratic equations.

$$2 \quad x^2 - \frac{9}{2}x + 5 = 0$$

(2) When the quadratic equation $x^2 - mx + m + 3 = 0$ has multiple solution, find the value of the constant m. Also, find the multiple solution of the quadratic equation at that time.

solution

(1) Let D be the discriminant for the given quadratic equations.

①
$$D = 6^2 - 4 \cdot (-2) \cdot \left(-\frac{9}{2}\right) = 36 - 36 = 0$$

Since D = 0, the number of real solutions is **1**.

②
$$D = \left(-\frac{9}{2}\right)^2 - 4 \cdot 1 \cdot 5 = \frac{81}{4} - 20 = \frac{1}{4}$$

Since D > 0, the number of real solutions is **2**.

(2) Let D be the discriminant of the given quadratic equation, and we obtain

$$D = (-m)^2 - 4 \cdot 1 \cdot (m+3) = m^2 - 4m - 12 = (m+2)(m-6).$$

The condition for having a multiple solution is that D=0 holds.

Therefore, (m+2)(m-6)=0. Solving for this, m=-2, 6.

When m=-2, the quadratic equation is $x^2+2x+1=0$. Solving for this, x=-1.

When m=6, the quadratic equation is $x^2-6x+9=0$. Solving for this, x=3.

Thus, when m=-2, the multiple solution is x=-1, and when m=6, the multiple solution is x=3.

1 0

How does the number of common points by the graph of the quadratic function $y = -x^2 + 4x + 2k$ with the x-axis vary with the value of the constant k?

solution

Let *D* be the discriminant of the quadratic equation $-x^2+4x+2k=0$.

$$D=4^2-4 \cdot (-1) \cdot 2k=16+8k$$

- (i) When we have two different common points, D>0, so 16+8k>0 i.e. k>-2.
- (ii) When they are tangent at one point, D=0, so 16+8k=0, i.e. k=-2.
- (iii) When there is no shared point, $D \le 0$, then $16 + 8k \le 0$, i.e. $k \le -2$.

(1) Solve the following quadratic inequalities.

①
$$2x^2 \le 7x$$

(2) Solve the simultaneous inequalities $\begin{cases} x^2 + 2x - 3 \le 0 \\ x^2 + x - 1 > 0 \end{cases}$

solution

(1) ①
$$2x^2 \le 7x \implies 2x^2 - 7x \le 0$$

The solution of $2x^2 - 7x = 0$ is x = 0, $\frac{7}{2}$ from $2x^2 - 7x = x(2x - 7) = 0$.

 $\begin{array}{c|c}
 & y \\
\hline
 & \overline{7} & x
\end{array}$

Therefore, the solution of the inequality is $0 \le x \le \frac{7}{2}$

from the figure on the right.

The solution of
$$x^2 - x + \frac{1}{4} = 0$$
 is $x = \frac{1}{2}$

from
$$x^2 - x + \frac{1}{4} = \left(x - \frac{1}{2}\right)^2 = 0$$
.

Therefore, the solution of the inequality is

from the figure on the right.

(2)
$$x^2+2x-3 \le 0$$

The solution of $x^2 + 2x - 3 = 0$ is x = -3, 1 from $x^2 + 2x - 3 = (x + 3)(x - 1) = 0$.

Therefore, the solution of the inequality is $-3 \le x \le 1$.

$$\cdot x^2 + x - 1 > 0$$

The solution of
$$x^2 + x - 1 = 0$$
 is $x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{5}}{2}$.

Therefore, the solution of the inequality is $x < \frac{-1 - \sqrt{5}}{2}$, $\frac{-1 + \sqrt{5}}{2} < x$.

From the number line on the right, the solution of the simultaneous inequality is

$$-3 \le x < \frac{-1 - \sqrt{5}}{2}, \quad \frac{-1 + \sqrt{5}}{2} < x \le 1.$$

Find the range of values of the constant k such that the quadratic inequality $x^2 + (k-2)x - k + 10 > 0$ holds for all real numbers x.

solution

If $f(x) = x^2 + (k-2)x - k + 10$, the coefficient of x^2 in f(x) is positive, so the graph of the quadratic function y = f(x) is convex downward.

Therefore, the condition for f(x) > 0 to hold for all real numbers x is that the graph of y = f(x) is always above the x-axis, i.e., the graph of y = f(x) has no common points with the x-axis.

Thus, let D be the discriminant of the quadratic equation f(x)=0. It is sufficient if D<0. where $D=(k-2)^2-4\cdot 1\cdot (-k+10)=k^2-4k+4+4k-40=k^2-36=(k+6)(k-6)$, so (k+6)(k-6)<0 from D<0.

Solving for this, we get -6 < k < 6.

1 3

Determine the range of values of the constant m so that the graph of the quadratic function $y=x^2-(m+2)x+5$ has two different common points on the positive part of the x-axis.

solution

For the graph of the quadratic function $y=x^2-(m+2)x+5$, let $f(x)=x^2-(m+2)x+5$ and the discriminant D of the quadratic equation f(x)=0.

$$D = \{-(m+2)\}^2 - 4 \cdot 1 \cdot 5 = m^2 + 4m + 4 - 20 = m^2 + 4m - 16$$

D>0, (position of the axis)>0, and f(0)>0.

(i) D > 0 i.e. $m^2 + 4m - 16 > 0$

The solution to $m^2 + 4m - 16 = 0$ is

$$m = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-16)}}{2 \cdot 1} = \frac{-4 \pm \sqrt{16 + 64}}{2} = \frac{-4 \pm 4\sqrt{5}}{2} = -2 \pm 2\sqrt{5}.$$

Therefore, $m < -2 - 2\sqrt{5}$, $-2 + 2\sqrt{5} < m$.

(ii) (position of the axis)>0

From
$$x^2 - (m+2)x + 5 = \left(x - \frac{m+2}{2}\right)^2 - \left(\frac{m+2}{2}\right)^2 + 5$$
, the axis is straight line $x = \frac{m+2}{2}$.

From this,
$$\frac{m+2}{2} > 0$$
. Therefore, $m > -2$.

(iii) f(0) > 0

From f(0) = 5, f(0) > 0 is always satisfied.

From the above, it is $m>-2+2\sqrt{5}$ from the number line on the right .

$$\begin{array}{c|cccc}
(i) & & & & & \\
\hline
-2 - 2\sqrt{5} & -2 & -2 + 2\sqrt{5} & m
\end{array}$$

Study

- (1) Find the coordinates of the common point by the parabola $y = -x^2 + 2x + 5$ and the line y = x + 3.
- (2) Let b be a real number. Find the value of the constant b such that the parabola $y=x^2-2x-2$ and the line y=2x+b are tangent.

solution

(1) Find the solution of the quadratic equation $x+3=-x^2+2x+5$ obtained by eliminating y.

$$x+3=-x^2+2x+5 \implies x^2-x-2=0 \implies (x+1)(x-2)=0$$

Solving for this, we get x = -1, 2.

$$y=(-1)+3=2$$
 when $x=-1$.

$$y=2+3=5$$
 when $x=2$.

Therefore, the coordinates of the common point to be sought are

(-1, 2) and (2, 5).

(2) The number of real solutions to the quadratic equation $2x+b=x^2-2x-2$ obtained by eliminating y should be one.

$$2x+b=x^2-2x-2 \implies x^2-4x-2-b=0$$

Let D be the discriminant equation of the quadratic equation $x^2-4x-2-b=0$.

$$D=(-4)^2-4\cdot 1\cdot (-2-b)=16+8+4b=24+4b$$

The intent of the problem is satisfied when D=0. Therefore, b=-6