## Quadratic function

## 1

If the functions $f(x)$ and $g(x)$ are $f(x)=3 x-1$ and $g(x)=-2 x^{2}+4 x$, find the following values.
(1) $f(0)$
(2) $f\left(-\frac{1}{3}\right)$
(3) $f(3 a)$
(4) $g(2)$
(5) $g\left(\frac{1}{2}\right)$
(6) $g(a-1)$

## solution

From $f(x)=3 x-1$
(1) $f(0)=3 \cdot 0-1=-1$
(2) $f\left(-\frac{1}{3}\right)=3 \cdot\left(-\frac{1}{3}\right)-1=-1-1=-2$
(3) $f(3 a)=3 \cdot 3 a-1=\mathbf{9 a}-\mathbf{1}$

From $g(x)=-2 x^{2}+4 x$
(4) $g(2)=-2 \cdot 2^{2}+4 \cdot 2=-8+8=\mathbf{0}$
(5) $g\left(\frac{1}{2}\right)=-2 \cdot\left(\frac{1}{2}\right)^{2}+4 \cdot \frac{1}{2}=-\frac{1}{2}+2=\frac{-1+4}{2}=\frac{3}{2}$
(6) $g(a-1)=-2(a-1)^{2}+4(a-1)=-2\left(a^{2}-2 a+1\right)+4 a-4=-2 a^{2}+4 a-2+4 a-4=-\mathbf{2 a}+\mathbf{8 a}-\mathbf{6}$

Math-Aquarium【Exercises + Solutions】 Quadratic function

## 2

Find the value range of the following function.
(1) $y=3 x+1 \quad(-2 \leqq x \leqq 0)$
(2) $y=-\frac{1}{3} x-2 \quad(-3 \leqq x \leqq 1)$

## solution

(1) $y=3 x+1 \quad(-2 \leqq x \leqq 0)$

The graph of the above function is shown in the figure on the right.
Therefore, the value range is

$$
-5 \leqq y \leqq 1
$$

(2) $y=-\frac{1}{3} x-2 \quad(-3 \leqq x \leqq 1)$

The graph of the above function is shown in the figure on the right. Therefore, the value range is

$$
-\frac{7}{3} \leqq y \leqq-1
$$




## 3

Answer how the graphs of the following quadratic functions are each parallel shifts of the graph of the quadratic function $y=2 x^{2}$. Sketch the graph of each and find its axis and vertex.
(1) $y=2 x^{2}-1$
(2) $y=2(x-2)^{2}$
(3) $y=2(x+1)^{2}-3$

## solution

(1) The parabola $y=2 x^{2}-1$ is the parabola $y=2 x^{2}$
shifted parallel along the $\boldsymbol{y}$-axis direction by -1 . The axis is the straight line $x=0(y$-axis), the vertex is $(0,-1)$, and the graph is shown in the figure on the right.

(2) The parabola $y=2(x-2)^{2}$ is the parabola $y=2 x^{2}$
shifted parallel along the $\boldsymbol{x}$-axis direction by 2 .
The axis is the straight line $x=2$, the vertex is $(2,0)$, and the graph is shown in the figure on the right.

(3) The parabola $y=2(x+1)^{2}-3$ is expressed as parabola $y=2\{x-(-1)\}^{2}-3$, which means that the parabola $y=2 x^{2}$ is shifted parallel along the $\boldsymbol{x}$-axis direction by $-\mathbf{1}$ and along the $y$-axis direction by -3 .
The axis is the straight line $x=-1$, the vertex is $(-1,-3)$, and the graph is shown in the figure on the right.


## 4

(1) Sketch the quadratic function $y=-3 x^{2}-2 x+1$ and find its axis and vertex.
(2) When the vertices of two parabolas $y=x^{2}-8 x$ and $y=-\frac{1}{2} x^{2}+a x-3 b$ coincide, find the values of the constants $a$ and $b$.

## solution

(1) $y=-3 x^{2}-2 x+1=-3\left(x^{2}+\frac{2}{3} x\right)+1=-3\left(x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9}\right)+1$

$$
\begin{aligned}
& =-3\left\{\left(x+\frac{1}{3}\right)^{2}-\frac{1}{9}\right\}+1=-3\left(x+\frac{1}{3}\right)^{2}+\frac{1}{3}+1 \\
& =-3\left(x+\frac{1}{3}\right)^{2}+\frac{4}{3}
\end{aligned}
$$

The axis is the line $x=-\frac{1}{3}$, the vertex is $\left(-\frac{1}{3}, \frac{4}{3}\right)$.


## The graph is shown in the figure on the right.

(2) $y=x^{2}-8 x=x^{2}-8 x+16-16=(x-4)^{2}-16 \quad$ Therefore, the vertex is $(4,-16)$.

$$
\begin{aligned}
y & =-\frac{1}{2} x^{2}+a x-3 b=-\frac{1}{2}\left(x^{2}-2 a x\right)-3 b=-\frac{1}{2}\left(x^{2}-2 a x+a^{2}-a^{2}\right)-3 b \\
& =-\frac{1}{2}\left\{(x-a)^{2}-a^{2}\right\}-3 b=-\frac{1}{2}(x-a)^{2}+\frac{1}{2} a^{2}-3 b
\end{aligned}
$$

Therefore, since the vertex is $\left(a, \frac{1}{2} a^{2}-3 b\right)$.

$$
\left\{\begin{array}{l}
4=a  \tag{1}\\
-16=\frac{1}{2} a^{2}-3 b
\end{array}\right.
$$

Substituting (1) into (2), we get $-16=\frac{1}{2} \cdot 4^{2}-3 b=8-3 b$. Solve this and we get $b=8$. Therefore $a=4, \quad b=8$.

## 5

(1) How much parallel shift of the parabola $y=-2 x^{2}-14 x-13$ will overlap the parabola $y=-2 x^{2}+8 x+7$ ?
(2) When the graph of the quadratic function $y=x^{2}+a x+4$ is translated by 2 along the $x$-axis direction to form the graph of the quadratic function $y=x^{2}-9 x+b$, find the values of the constants $a$ and $b$.
(3) Fill in the following blanks.

The graph of the quadratic function $y=x^{2}$ was translated by $\qquad$ along the $x$-axis direction and translated by (b) (c) , yields the graph of the quadratic function $y=-x^{2}-2 x-2$.

## solution

(1) $y=-2 x^{2}-14 x-13=-2\left(x^{2}+7 x\right)-13=-2\left(x^{2}+7 x+\frac{49}{4}-\frac{49}{4}\right)-13$

$$
\begin{aligned}
& =-2\left\{\left(x+\frac{7}{2}\right)^{2}-\frac{49}{4}\right\}-13=-2\left(x+\frac{7}{2}\right)^{2}+\frac{49}{2}-13 \\
& =-2\left(x+\frac{7}{2}\right)^{2}+\frac{23}{2}, \text { so the vertex is }\left(-\frac{7}{2}, \frac{23}{2}\right) . \\
y & =-2 x^{2}+8 x+7=-2\left(x^{2}-4 x\right)+7=-2\left(x^{2}-4 x+4-4\right)+7 \\
& =-2\left\{(x-2)^{2}-4\right\}+7=-2(x-2)^{2}+8+7=-2(x-2)^{2}+15,
\end{aligned}
$$

so the vertex is $(2,15)$.
Therefore, $\frac{11}{2}$ in the $x$-axis direction


$$
2-\left(-\frac{7}{2}\right)=\frac{11}{2}
$$

$$
15-\frac{23}{2}=\frac{7}{2}
$$

and $\frac{7}{2}$ parallel shift in the $\boldsymbol{y}$-axis direction will result in overlap.
(2) $y=x^{2}+a x+4=\left(x+\frac{a}{2}\right)^{2}-\frac{a^{2}}{4}+4$, so the vertex is $\left(-\frac{a}{2},-\frac{a^{2}}{4}+4\right)$. $y=x^{2}-9 x+b=\left(x-\frac{9}{2}\right)^{2}-\frac{81}{4}+b$, so the vertex is $\left(\frac{9}{2}, \quad-\frac{81}{4}+b\right)$.
From the coordinates of each vertex, we get $\left\{\begin{array}{l}-\frac{a}{2}+2=\frac{9}{2} \\ -\frac{a^{2}}{4}+4=-\frac{81}{4}+b\end{array}\right.$
From (1),$-\frac{a}{2}=\frac{5}{2}$, therefore $a=-5$.
Substituting $a=-5$ for (2) , $-\frac{(-5)^{2}}{4}+4=-\frac{81}{4}+b . \quad$ From this , $b=-\frac{25}{4}+4+\frac{81}{4}=18$.
From the above , $a=\mathbf{- 5}, \quad b=18$.

Math－Aquarium【Exercises＋Solutions】 Quadratic function
（3）$y=-x^{2}-2 x-2=-\left(x^{2}+2 x\right)-2=-\left\{(x+1)^{2}-1\right\}-2=-(x+1)^{2}+1-2=-(x+1)^{2}-1$
and so the vertex is $(-1,-1)$ ．
Thus，if the graph of the quadratic function $y=x^{2}$ is translated along the $x$－axis direction by（a） $\mathbf{- 1}$ and along the $y$－axis direction by （b） $\mathbf{1}$ ，and then symmetrically shifted about the（c）$x$－axis，the expression for the graph becomes $y=-x^{2}-2 x-2$ ．
$\langle$ Note〉（a） $\mathbf{1}$ ，（b） $\mathbf{1}$ ，and（c）origin are also correct．
（a） 1 ，（b）-1 ，and（c）$y$－axis are incorrect because the direction of the graph must be opposite．


## 6

(1) Find the maximum and minimum values of the function $y=x^{2}+x+2(-1 \leqq x \leqq 1)$.
(2) Find the minimum value of the function $y=x^{2}-4 x(a \leqq x \leqq a+1)$ with constant $a$ in the following three cases.
(1) $a<1$
(2) $1 \leqq a \leqq 2$
(3) $2<a$

## solution

(1) $y=x^{2}+x+2=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}+2$

$$
=\left(x+\frac{1}{2}\right)^{2}+\frac{7}{4}
$$

Since the domain of definition is $-1 \leqq x \leqq 1$,
from the graph on the right,
the maximum value is 4 when $x=1$,
and the minimum value is $\frac{7}{4}$ when $x=-\frac{1}{2}$.

(2) $y=x^{2}-4 x=(x-2)^{2}-4 \quad(a \leqq x \leqq a+1)$

This graph is convex at the bottom, has a fixed vertex, and the domain of definition moves.
(1) When $a<1$

The axis is $x=2$ and $a+1<2$ when $a<1$, so the axis is right-outer the domain of definition $a \leqq x \leqq a+1$.

Therefore, it is minimum at $x=a+1$, and the minimum value is

$$
\begin{aligned}
(a+1)^{2}-4(a+1) & =a^{2}+2 a+1-4 a-4 \\
& =\boldsymbol{a}^{\mathbf{2}} \mathbf{-} \mathbf{2 a} \mathbf{a} \mathbf{3} .
\end{aligned}
$$


$\boldsymbol{x}=2$

## 7

Find a quadratic function that satisfies the following conditions.
(1) Through 3 points $(2,0),(1,1),(3,5)$.
(2) Tangent to the $x$-axis and passing through two points $(1,1)$ and $(4,4)$.

## solution

(1) Substitute $x=2, y=0$ and $x=1, y=1$ and $x=3, y=5$ for $y=a x^{2}+b x+c$ to form a simultaneous equation.

$$
\begin{cases}0=4 a+2 b+c & \cdots \cdots(1) \\ 1=a+b+c & \cdots \cdots(2) \\ 5=9 a+3 b+c & \cdots \cdots(3)\end{cases}
$$

From (1)-(2), (3)-(1)

$$
\left\{\begin{array}{r}
-1=3 a+b \\
5=5 a+b
\end{array} . \quad \text { Solving this simultaneous equation yields } a=3, \quad b=-10\right.
$$

Substituting $a=3$ and $b=-10$ for (2), we obtain $c=8$.
From the above, $\boldsymbol{y}=\mathbf{3} \boldsymbol{x}^{\mathbf{2}}-\mathbf{1 0 x}+\mathbf{8}$.
(2) If it is tangent to the $x$-axis, the $y$-coordinate of the vertex is 0 .

Therefore, the quadratic function to be obtained can be expressed as

$$
y=a(x-p)^{2}
$$

Substitute $x=1, y=1$ and $x=4, y=4$ into this to form a simultaneous equation.

$$
\left\{\begin{array}{l}
1=a(1-p)^{2}  \tag{1}\\
4=a(4-p)^{2}
\end{array}\right.
$$

Expanding the right-hand side, we get $\left\{\begin{array}{ll}1=a-2 a p+a p^{2} & \cdots \cdots(1)^{\prime} \\ 4=16 a-8 a p+a p^{2} & \cdots \cdots \cdot(2)^{\prime}\end{array}\right.$.
From (2)' -()$^{\prime} \quad 3=15 a-6 a p$

$$
1=5 a-2 a p
$$

$$
a(5-2 p)=1 \text { and } 5-2 p \neq 0, \text { so } a=\frac{1}{5-2 p}
$$

Substituting this into (1), $1=\frac{1}{5-2 p}(1-p)^{2}$.
Since $5-2 p \neq 0$, multiplying both sides by $5-2 p, 5-2 p=1-2 p+p^{2}$.
To summarize, we have $p^{2}-4=0 . \quad$ Solving for this, $p= \pm 2$.
When $p=2$, we have $a=1$ from (1). When $p=-2$, we have $a=\frac{1}{9}$ from (1).
Therefore $y=(x-2)^{2}, y=\frac{1}{9}(x+2)^{2}$, that is $y=x^{2}-4 x+4, y=\frac{1}{9} x^{2}+\frac{4}{9} x+\frac{4}{9}$.

Math-Aquarium【Exercises + Solutions】 Quadratic function

## 8

Solve the following quadratic equations.
(1) $x^{2}-10 x+24=0$
(2) $14 x^{2}+29 x-15=0$
(3) $x^{2}+5 x+5=0$
(4) $x^{2}-6 x-6=0$

## solution

(1) $x^{2}-10 x+24=0$

Factorize the left-hand side to get $(x-4)(x-6)=0$.
Therefore, $x-4=0$ or $x-6=0$.
Thus, $x=4,6$.
(2) $14 x^{2}+29 x-15=0$

Factorize the left-hand side to get

$$
(2 x+5)(7 x-3)=0
$$

Therefore, $2 x+5=0$ or $7 x-3=0$.


Thus, $x=-\frac{5}{2}, \quad \frac{3}{7}$.
(3) $x^{2}+5 x+5=0$

By the solution formula of quadratic equation we obtain $\boldsymbol{x}=\frac{-5 \pm \sqrt{5^{2}-4 \cdot 1 \cdot 5}}{2 \cdot 1}=\frac{-5 \pm \sqrt{5}}{2}$.
(4) $x^{2}-6 x-6=0$

This quadratic equation can be viewed as $x^{2}+2 \cdot(-3) x-6=0$, so

$$
x=\frac{-(-3) \pm \sqrt{(-3)^{2}-1 \cdot(-6)}}{1}=3 \pm \sqrt{15}
$$

## 9

(1) Find the number of real solutions to the following quadratic equations.
(1) $-2 x^{2}+6 x-\frac{9}{2}=0$
(2) $x^{2}-\frac{9}{2} x+5=0$
(2) When the quadratic equation $x^{2}-m x+m+3=0$ has multiple solution, find the value of the constant $m$.

Also, find the multiple solution of the quadratic equation at that time.

## solution

(1) Let $D$ be the discriminant for the given quadratic equations.
(1) $D=6^{2}-4 \cdot(-2) \cdot\left(-\frac{9}{2}\right)=36-36=0$

Since $D=0$, the number of real solutions is $\mathbf{1}$.
(2) $D=\left(-\frac{9}{2}\right)^{2}-4 \cdot 1 \cdot 5=\frac{81}{4}-20=\frac{1}{4}$

Since $D>0$, the number of real solutions is 2 .
(2) Let $D$ be the discriminant of the given quadratic equation, and we obtain

$$
D=(-m)^{2}-4 \cdot 1 \cdot(m+3)=m^{2}-4 m-12=(m+2)(m-6)
$$

The condition for having a multiple solution is that $D=0$ holds.
Therefore, $(m+2)(m-6)=0$. Solving for this, $m=-2,6$.
When $m=-2$, the quadratic equation is $x^{2}+2 x+1=0$. Solving for this, $x=-1$.
When $m=6$, the quadratic equation is $x^{2}-6 x+9=0$. Solving for this, $x=3$.
Thus, when $m=-2$, the multiple solution is $x=-1$, and when $m=6$, the multiple solution is $x=3$.

Math-Aquarium【Exercises + Solutions】 Quadratic function

## 10

How does the number of common points by the graph of the quadratic function $y=-x^{2}+4 x+2 k$ with the $x$-axis vary with the value of the constant $k$ ?

## solution

Let $D$ be the discriminant of the quadratic equation $-x^{2}+4 x+2 k=0$.

$$
D=4^{2}-4 \cdot(-1) \cdot 2 k=16+8 k
$$

( i ) When we have two different common points, $D>0$, so $16+8 k>0$ i.e. $k>-2$.
( ii ) When they are tangent at one point, $D=0$, so $16+8 k=0$, i.e. $k=-2$.
(iii) When there is no shared point, $D<0$, then $16+8 k<0$, i.e. $k<-2$.
(When $k>-2$, there are 2 .
From (i), (ii ), and (iii), $\quad \begin{aligned} & \text { When } k>-2, \text { there are } 2 . \\ & \text { When } k=-2, \text { there is } 1 . \\ & \text { When } k<-2, \text { the number is } 0 .\end{aligned}$

## 11

(1) Solve the following quadratic inequalities.
(1) $2 x^{2} \leqq 7 x$
(2) $x^{2}-x+\frac{1}{4}>0$
(2) Solve the simultaneous inequalities $\left\{\begin{array}{l}x^{2}+2 x-3 \leqq 0 \\ x^{2}+x-1>0\end{array}\right.$.

## solution

(1) (1) $2 x^{2} \leqq 7 x \Rightarrow 2 x^{2}-7 x \leqq 0$

The solution of $2 x^{2}-7 x=0$ is $x=0, \frac{7}{2}$ from $2 x^{2}-7 x=x(2 x-7)=0$.
Therefore, the solution of the inequality is $\mathbf{0} \leqq x \leqq \frac{\mathbf{7}}{\mathbf{2}}$
from the figure on the right .

(2) $x^{2}-x+\frac{1}{4}>0$

The solution of $x^{2}-x+\frac{1}{4}=0$ is $x=\frac{1}{2}$
from $x^{2}-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^{2}=0$.
Therefore, the solution of the inequality is
All real numbers except $\frac{1}{2} \quad\left(\right.$ or $\left.x<\frac{1}{2}, \frac{1}{2}<x\right)$

from the figure on the right.
(2) $\cdot x^{2}+2 x-3 \leqq 0$

The solution of $x^{2}+2 x-3=0$ is $x=-3,1$ from $x^{2}+2 x-3=(x+3)(x-1)=0$.
Therefore, the solution of the inequality is $\mathbf{- 3} \boldsymbol{x} \leqq \mathbf{1}$.

- $x^{2}+x-1>0$

The solution of $x^{2}+x-1=0$ is $x=\frac{-1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot(-1)}}{2 \cdot 1}=\frac{-1 \pm \sqrt{5}}{2}$.
Therefore, the solution of the inequality is $x<\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}<x$.
From the number line on the right, the solution of the simultaneous inequality is

$$
-3 \leqq x<\frac{-1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}<x \leqq 1
$$



Math-Aquarium【Exercises + Solutions】 Quadratic function

## 12

Find the range of values of the constant $k$ such that the quadratic inequality $x^{2}+(k-2) x-k+10>0$ holds for all real numbers $x$.

## solution

If $f(x)=x^{2}+(k-2) x-k+10$, the coefficient of $x^{2}$ in $f(x)$ is positive, so the graph of the quadratic function $y=f(x)$ is convex downward .
Therefore, the condition for $f(x)>0$ to hold for all real numbers $x$ is that the graph of $y=f(x)$ is always above the $x$-axis, i.e., the graph of $y=f(x)$ has no common
 points with the $x$-axis .
Thus, let $D$ be the discriminant of the quadratic equation $f(x)=0$. It is sufficient if $D<0$.
where $D=(k-2)^{2}-4 \cdot 1 \cdot(-k+10)=k^{2}-4 k+4+4 k-40=k^{2}-36=(k+6)(k-6)$, so $(k+6)(k-6)<0$ from $D<0$.
Solving for this, we get $-\mathbf{6}<\boldsymbol{k}<\mathbf{6}$.

## 13

Determine the range of values of the constant $m$ so that the graph of the quadratic function $y=x^{2}-(m+2) x+5$ has two different common points on the positive part of the $x$-axis.

## solution

For the graph of the quadratic function $y=x^{2}-(m+2) x+5$, let $f(x)=x^{2}-(m+2) x+5$ and the discriminant $D$ of the quadratic equation $f(x)=0$.

$$
D=\{-(m+2)\}^{2}-4 \cdot 1 \cdot 5=m^{2}+4 m+4-20=m^{2}+4 m-16
$$

$D>0,($ position of the axis $)>0$, and $f(0)>0$.
(i ) $D>0$ i.e. $m^{2}+4 m-16>0$
The solution to $m^{2}+4 m-16=0$ is

$$
m=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 1 \cdot(-16)}}{2 \cdot 1}=\frac{-4 \pm \sqrt{16+64}}{2}=\frac{-4 \pm 4 \sqrt{5}}{2}=-2 \pm 2 \sqrt{5}
$$

Therefore, $m<-2-2 \sqrt{5}, \quad-2+2 \sqrt{5}<m$.
(ii) ( position of the axis ) $>0$

From $x^{2}-(m+2) x+5=\left(x-\frac{m+2}{2}\right)^{2}-\left(\frac{m+2}{2}\right)^{2}+5$, the axis is straight line $x=\frac{m+2}{2}$.
From this, $\frac{m+2}{2}>0 . \quad$ Therefore, $m>-2$.
(iii) $f(0)>0$

From $f(0)=5, f(0)>0$ is always satisfied .

From the above, it is $m>-2+2 \sqrt{5}$ from the number line on the right.


## Study

(1) Find the coordinates of the common point by the parabola $y=-x^{2}+2 x+5$ and the line $y=x+3$.
(2) Let $b$ be a real number . Find the value of the constant $b$ such that the parabola $y=x^{2}-2 x-2$ and the line $y=2 x+b$ are tangent .

## solution

(1) Find the solution of the quadratic equation $x+3=-x^{2}+2 x+5$ obtained by eliminating $y$.
$x+3=-x^{2}+2 x+5 \quad \Rightarrow \quad x^{2}-x-2=0 \quad \Rightarrow \quad(x+1)(x-2)=0$
Solving for this, we get $x=-1,2$.
$y=(-1)+3=2$ when $x=-1$.
$y=2+3=5$ when $x=2$.
Therefore, the coordinates of the common point to be sought are
 $(-1,2)$ and $(2,5)$.
(2) The number of real solutions to the quadratic equation $2 x+b=x^{2}-2 x-2$ obtained by eliminating $y$ should be one.
$2 x+b=x^{2}-2 x-2 \Rightarrow x^{2}-4 x-2-b=0$
Let $D$ be the discriminant equation of the quadratic equation $x^{2}-4 x-2-b=0$.

$$
D=(-4)^{2}-4 \cdot 1 \cdot(-2-b)=16+8+4 b=24+4 b
$$

The intent of the problem is satisfied when $D=0 . \quad$ Therefore, $\boldsymbol{b}=-\mathbf{6}$

