複素数と方程式

1. 複素数の計算
次の計算をせよ。ただし、i は虚数単位とする。
（注意）以後、特に断りがない限り，i は虚数単位を表すものとする。

(1) \frac{2+5i}{3-2i}
(2) \sqrt{-5} \times \sqrt{-20}

解答
(1) \frac{2+5i}{3-2i} = \frac{(2+5i)(3+2i)}{(3-2i)(3+2i)} = \frac{6+19i-10}{9+4} = -\frac{4}{13} + \frac{19}{13}i
(2) \sqrt{-5} \times \sqrt{-20} = \sqrt{5i} \times \sqrt{20i} = \sqrt{100i^2} = -10

2. 複素数の相等
等式 \((4+3i)x + (1+2i)y + 5 = 0 \) を満たす実数 \(x, y \) を求めよ。

解答
与えられた等式の左辺を \(i \) について整理すると \(4x+y+5+(3x+2y)i=0 \)
\(x, y \) が実数であるから，\(4x+y+5, 3x+2y \) も実数である。
よって \begin{cases} 4x+y+5=0 \\ 3x+2y=0 \end{cases} \]
を満たす \(x, y \) を求めればよい。
連立方程式を解くと \(x=-2, y=3 \)
【例題】複素数と方程式

2次方程式の解と判別式

(1) 次の2次方程式を解け。
 ① \(x^2 = -2 \)
 ② \(2x(3-x) = 2x + 3 \)

(2) 次の2次方程式の解の種類を判別せよ。
 ① \(2x^2 - 5x + 4 = 0 \)
 ② \(3x^2 - 8x - 2 = 0 \)

(3) 2次方程式 \(2x^2 - 2kx + k^2 - 3k + 4 = 0 \) が重解をもつような定数 \(k \) の値と, そのときの重解をすべて求めよ。

負の数の平方根

\(k > 0 \) とする。負の数 \(-k\) の平方根は \(\pm \sqrt{-k} \) すなわち \(\pm ki \)

2次方程式の解の公式

2次方程式 \(ax^2 + bx + c = 0 \) の解は

\[
 x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

2次方程式の解の種類の判別

2次方程式 \(ax^2 + bx + c = 0 \) の判別式を \(D = b^2 - 4ac \) とする。

<table>
<thead>
<tr>
<th>(D) の値</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(> 0)</td>
<td>実数解をもつ (\Rightarrow)</td>
</tr>
<tr>
<td>(= 0)</td>
<td>重解をもつ (\Rightarrow)</td>
</tr>
<tr>
<td>(< 0)</td>
<td>異なる2つの虚数解をもつ (\Rightarrow)</td>
</tr>
</tbody>
</table>

解答

(1) ① \(x = \pm \sqrt{-2} = \pm \sqrt{2}i \)
 ② 与えられた方程式を整理すると \(2x^2 - 4x + 3 = 0 \) となるので, 解の公式より

\[
 x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2} = \frac{4 \pm \sqrt{16 - 24}}{4} = \frac{4 \pm 2\sqrt{2}i}{4} = \frac{2 \pm \sqrt{2}i}{2}
\]

(2) ① \(D = (-5)^2 - 4 \cdot 2 \cdot 4 = 25 - 32 = -7 \) より, \(D < 0 \) であるから 異なる2つの虚数解をもつ。
 ② \(D = (-8)^2 - 4 \cdot 3 \cdot (-2) = 64 + 24 = 88 \) より, \(D > 0 \) であるから 異なる2つの実数解をもつ。

(3) \(D = (-2k)^2 - 4 \cdot 2 \cdot (k^2 - 3k + 4) = 4k^2 - 8k^2 + 24k - 32 \)

\[
 = -4k^2 + 24k - 32 = -4(k^2 - 6k + 8) = -4(k - 2)(k - 4)
\]

題意より, \(D = 0 \) となるときの \(k \) の値を求める。

\[-4(k - 2)(k - 4) = 0 \Rightarrow k = 2, 4\]

\(k = 2 \) のとき \(2x^2 - 2 \cdot 2 \cdot x + 2^2 - 3 \cdot 2 + 4 = 2x^2 - 4x + 2 = 0 \Rightarrow 2(x-1)^2 = 0 \Rightarrow x = 1 \)

\(k = 4 \) のとき \(2x^2 - 2 \cdot 4 \cdot x + 4^2 - 3 \cdot 4 + 4 = 2x^2 - 8x + 8 = 0 \Rightarrow 2(x-2)^2 = 0 \Rightarrow x = 2 \)

以上より \(k = 2 \) のとき \(x = 1 \), \(k = 4 \) のとき \(x = 2 \)
【例題】複素数と方程式

2次方程式の解と係数の関係
2次方程式 $2x^2+6x-3=0$ の2つの解を α, β とするとき、次の値を求めよ。

(1) $\alpha^2 + \alpha \beta^2$
(2) $\alpha^2 + \beta^2$
(3) $\alpha^3 + \beta^3$

解答

2次方程式の解と係数の関係により $\alpha + \beta = -\frac{6}{2} = -3$, $\alpha \beta = \frac{-3}{2} = -\frac{3}{2}$

(1) $\alpha^2 + \alpha \beta^2 = \alpha \beta (\alpha + \beta) = -3 \cdot (-3) = \frac{9}{2}$

(2) $\alpha + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta = (-3)^2 - 2 \cdot \left(-\frac{3}{2}\right) = 9 + 3 = 12$

(3) $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3 \alpha \beta (\alpha + \beta) = (-3)^3 - 3 \cdot \left(-\frac{3}{2}\right) \cdot (-3) = -27 - \frac{27}{2} = -\frac{81}{2}$

別解 $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha \beta + \beta^2) = (\alpha + \beta)((\alpha + \beta)^2 - 3 \alpha \beta) = (\alpha + \beta)(-\frac{9}{2} - \frac{3}{2}) = -\frac{81}{2}$

5 2次方程式の作成

(1) 2つの数 $3 + \sqrt{2}, 3 - \sqrt{2}$ を解にもつ2次方程式を1つ作れ。
(2) 2次方程式 $x^2+3x-6=0$ の2つの解を α, β とするとき、$2\alpha + \beta, \alpha + 2\beta$ を解にもつ2次方程式を1つ作れ。
(3) 和が2、積が7である2つの数を求めよ。

解答

2つの数 α, β を解にもつ2次方程式は $x^2-(\alpha + \beta)x + \alpha \beta = 0$

〈注意〉任意の2次方程式を求める場合、x^2の係数が1のものを考えればよい。

(1) $\alpha = 3 + \sqrt{2}$, $\beta = 3 - \sqrt{2}$ とする。
$\alpha + \beta = (3 + \sqrt{2}) + (3 - \sqrt{2}) = 6$
$\alpha \beta = (3 + \sqrt{2})(3 - \sqrt{2}) = 9 - 2 = 7$
よって $x^2 - 6x + 7 = 0$

2次方程式 $x^2 + bx + c = 0$ の解が α, β であるとき
$\alpha + \beta = -b$, $\alpha \beta = c$
(2) 2次方程式の解と係数の関係により \(\alpha + \beta = -3, \ \alpha \beta = -6 \)
これにより
\[
(2 \alpha + \beta) + (\alpha + 2 \beta) = 3 \alpha + 3 \beta = 3(\alpha + \beta) = 3(-3) = -9
\]
\[
(2 \alpha + \beta)(\alpha + 2 \beta) = 2 \alpha^2 + 4 \alpha \beta + \alpha \beta + 2 \beta^2 = 2(\alpha^2 + \beta^2) + 5 \alpha \beta
\]
\[
= 2((\alpha + \beta)^2 - 2 \alpha \beta) + 5 \alpha \beta = 2(\alpha + \beta)^2 + \alpha \beta
\]
\[
= 2 \cdot (-3)^2 + (-6) = 18 - 6 = 12
\]
よって \(x^2 + 9x + 12 = 0 \)

(3) 2つの数を \(\alpha, \beta \) とおくと \(\alpha + \beta = 2, \ \alpha \beta = 7 \)
よって, \(\alpha, \beta \) を解にもつ 2次方程式は \(x^2 - 2x + 7 = 0 \)

解の公式により \[
\begin{align*}
\alpha & = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 7}}{2} \\
& = \frac{2 \pm \sqrt{4 - 28}}{2} \\
& = \frac{2 \pm \sqrt{6i}}{2} = 1 \pm \sqrt{6i}
\end{align*}
\]
したがって, 2つの数は \(1 + \sqrt{6i}, 1 - \sqrt{6i} \)

6 2次方程式の実数解の符号
2次方程式 \(x^2 + mx + m + 8 = 0 \)が、次の条件を満たすように実数 \(m \) の値の範囲を定めよ。

1. 異なる2つの正の解をもつ。
2. 異なる2つの負の解をもつ。
3. 正と負の解をもつ。

要 点

2つの実数 \(\alpha, \beta \) について、次のことが成り立ちます。

- \(\alpha > 0 \) かつ \(\beta > 0 \) ⇔ \(\alpha + \beta > 0 \) かつ \(\alpha \beta > 0 \)
- \(\alpha < 0 \) かつ \(\beta < 0 \) ⇔ \(\alpha + \beta < 0 \) かつ \(\alpha \beta > 0 \)
- \(\alpha \) と \(\beta \) が異符号 ⇔ \(\alpha \beta < 0 \)

2次方程式 \(ax^2 + bx + c = 0 \) の判別式を \(D \), 2つの解を \(\alpha, \beta \) とすると、次のことがいえます。

1. 異なる2つの正の解をもつ ⇔ \(D > 0, \ \alpha + \beta > 0, \ \alpha \beta > 0 \)

（注意）正や負は実数のときに考えることなので、2次方程式は実数解をもたなければならない。

2. 異なる2つの負の解をもつ ⇔ \(D > 0, \ \alpha + \beta < 0, \ \alpha \beta > 0 \)

3. 正と負の解をもつ ⇔ \(\alpha \beta < 0 \)

コメント: 2次方程式 \(ax^2 + bx + c = 0 \)に関して, \(D = b^2 - 4ac = a^2 \left(\frac{b^2 - 4ac}{a^2} \right) = a^2 \left(\frac{b}{a} \right)^2 - 4 \left(\frac{c}{a} \right) \),

\(\alpha \beta = \frac{c}{a} \) より, \(\alpha \beta < 0 \) のとき \(D > 0 \) となる。これにより, 3の条件は \(\alpha \beta < 0 \) のみ満たせばよい。
解答
2次方程式$x^2+mx+m+8=0$の判別式をD、2つの解をα、βとすると

\[D = m^2 - 4 \cdot 1 \cdot (m+8) = m^2 - 4m - 32 = (m+4)(m-8), \ \alpha + \beta = -m, \ \alpha \beta = m+8 \]

(1) $D > 0, \ \alpha + \beta > 0, \ \alpha \beta > 0$ を満たせばよい。
(i) $D > 0$ すなわち $(m+4)(m-8) > 0$ よって $m < -4, \ 8 < m$
(ii) $\alpha + \beta > 0$ すなわち $-m > 0$ よって $m < 0$
(iii) $\alpha \beta > 0$ すなわち $m+8 > 0$ よって $m > -8$
以上のことから、右の数直線より $-8 < m < -4$

(2) $D > 0, \ \alpha + \beta < 0, \ \alpha \beta > 0$ を満たせばよい。
(i) $D > 0$ (1)より $m < -4, \ 8 < m$
(ii) $\alpha + \beta < 0$ すなわち $-m < 0$ よって $m > 0$
(iii) $\alpha \beta > 0$ (1)より $m > -8$
以上のことから、右の数直線より $m > 8$

(3) $\alpha \beta < 0$ を満たせばよい。
$m + 8 < 0$ より $m < -8$

7 剰余の定理
(1) 多項式 $2x^3 + 8x^2 + 5x - 2$ を $x + 3$ で割ったときの余りを求めよ。
(2) 多項式 $P(x)$ を、$2x + 1, \ 2x - 1$ で割ったときの余りがそれぞれ $5, \ 1$ のとき、$P(x)$ を $4x^2 - 1$ で割ったときの余りを求めよ。

要 点

剰余の定理
・多項式 $P(x)$ を1次式 $x - \alpha$ で割った余りは $P(\alpha)$
・多項式 $P(x)$ を1次式 $ax + b$ で割った余りは $P\left(-\frac{b}{a}\right)$

多項式の除法
$A, \ B$ を同じ文字についての多項式とする。ただし、$B \neq 0$ とする。
A を B で割ったとき、商が Q, 余りが R になったとする。このとき、$A = BQ + R$ が成り立つ。
余り R の次数は割る式 B の次数より小さくなる。

解答
(1) $P(x) = 2x^3 + 8x^2 + 5x - 2$ とおく。
剰余の定理により、求める余りは

\[
P(-3) = 2 \cdot (-3)^3 + 8 \cdot (-3)^2 + 5 \cdot (-3) - 2
\]

\[
= -54 + 72 - 15 - 2 = 1
\]
(2) 二次式 $4x^2-1$ で割ったときの余りは 1 次式または定数となるので $ax+b$ とおける。

$4x^2-1=(2x+1)(2x-1)$ より, $P(x)$ を 2 次式 $(2x+1)(2x-1)$ で割ったときの商を Q とすると

$P(x)=(2x+1)(2x-1)Q+ax+b$

と表すことができる。

剰余の定理により $P\left(\frac{1}{2}\right)=5, P\left(\frac{3}{2}\right)=1$ であるから

$-\frac{1}{2}a+b=5, \frac{1}{2}a+b=1$

これらを連立させて解くと $a=-4, b=3$ よって, 求める余りは $-4x+3$

8 高次方程式
次の方程式を解け。

(1) $x^3=-1$ (2) $x^3-4x^2+2x+1=0$

要点
因数定理
・1 次式 $x-a$ が多項式 $P(x)$ の因数である $\iff P(a)=0$
・1 次式 $ax+b$ が多項式 $P(x)$ の因数である $\iff P\left(-\frac{b}{a}\right)=0$

与えられた方程式を $P(x)=0$ の形に変形し, $P(a)=0$ を満たす a を見つけ出します。このとき, 因数定理により多項式 $P(x)$ は $x-a$ を因数にとるので, $P(x)=(x-a) Q(x)$ と表すことができます。これを繰り返し $P(x)$ を 1 次式または 2 次式の積で表わせば, 高次方程式 $P(x)=0$ の解を求めることができます。

組立除法
多項式 $P(x)$ を 1 次式 $x-a$ で割ったときの商と余りを求める簡単な方法に, 組立除法と呼ばれるものがあります。

たとえば, 多項式 $P(x)=ax^3+bx^2+cx+d$ を $x-a$ で割ったときの商を $l x^2+mx+n$, 余りを R とすると, 右のようにして l, m, n, R を求めることができます。

解答
(1) 与えられた方程式を整理すると $x^3+1=0$ となる。左辺を因数分解すると

$x^3+1=(x+1)(x^2-x+1)$ より $x+1=0$ または $x^2-x+1=0$

解の公式により $x=\frac{-(-1)\pm\sqrt{(-1)^2-4\cdot1\cdot1}}{2}=\frac{1\pm\sqrt{1-4}}{2}=\frac{1\pm\sqrt{3i}}{2}$

したがって $x=-1, \frac{1\pm\sqrt{3i}}{2}$
Math-Aquarium【例題】複素数と方程式

(2) \(P(x)=x^3-4x^2+2x+1 \) とおくと \(1^3-4\cdot1^2+2\cdot1+1=1-4+2+1=0 \) より \(P(1)=0 \) が成り立ちます。

右の組立除法により

\[
\begin{array}{c|cccc}
& 1 & -4 & 2 & 1 \\
\hline
1 & 1 & -3 & -1 & 0 \\
1 & -3 & -1 & 0 & 0 \\
\end{array}
\]

\(P(x)=0 \) から \(x-1=0 \) または \(x^2-3x-1=0 \) となる。

解の公式により

\[
x=\frac{-(3)\pm\sqrt{(-3)^2-4\cdot1\cdot(-1)}}{2} = \frac{3\pm\sqrt{9+4}}{2} = \frac{3\pm\sqrt{13}}{2}
\]

したがって \(x=1, \frac{3\pm\sqrt{13}}{2} \)

9 解からの係数決定

(1) 方程式 \(x^3-ax^2+2=0 \) の 1 つの解が \(x=1 \) であるとき, 実数 \(a \) の値を求めよ。また, そのときの他の解を求めよ。

(2) 方程式 \(x^3+ax^2+bx+10=0 \) の 1 つの解が \(x=3-i \) であるとき, 実数 \(a, b \) の値を求めよ。また, そのときの他の解を求めよ。

要点
虚数解をもつ高次方程式
実数係数の高次方程式が虚数解 \(x=s+t\imath \) （\(s, t \) は実数）をもつとき, 共役な複素数 \(s-t\imath \) もこの高次方程式の解となることが知られています。

\[
(x-s)=\pm t\imath \Rightarrow (x-s)^2=(\pm t\imath)^2 \Rightarrow x^2-2sx-s^2+t^2=0
\]

実数係数の高次方程式 \(P(x)=0 \) が虚数解 \(x=s+t\imath \) をもつとき, \(P(x) \) は \(x^2-2sx+s^2+t^2 \) で割り切れます。

3 次方程式の解と係数の関係
3 次方程式 \(ax^3+bx^2+cx+d=0 \) の 3 つの解を \(\alpha, \beta, \gamma \) とすると

\[
\alpha + \beta + \gamma = -\frac{b}{a}, \quad \alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}, \quad \alpha \beta \gamma = -\frac{d}{a}
\]

解答

(1) 与えられた方程式に \(x=1 \) を代入すると

\[
x^3-a\cdot1^2+2=1-a+2=0 \quad \text{よって} \quad a=3
\]

方程式 \(x^3-3x^2+2=0 \) は \(x=1 \) を解にもちつみから

右の組立除法により

\[
\begin{array}{c|cccc}
& 1 & -3 & 0 & 2 \\
\hline
1 & 1 & -2 & -2 & 0 \\
1 & -2 & -2 & 0 & 0 \\
\end{array}
\]

解の公式により

\[
x=\frac{-(2)\pm\sqrt{(-2)^2-4\cdot1\cdot(-2)}}{2} = \frac{2\pm\sqrt{4+8}}{2} = \frac{2\pm2\sqrt{3}}{2} = 1\pm\sqrt{3}
\]

したがって \(a=3, \) 他の解は \(x=1\pm\sqrt{3} \)
2 この方程式は $x = 3 + i$ も解にもつ。

$$x = 3 \pm i \Rightarrow x - 3 = \pm i \quad \text{両辺2乗する} \Rightarrow (x - 3)^2 = (\pm i)^2$$

$$\Rightarrow x^2 - 6x + 9 = -1 \Rightarrow x^2 - 6x + 10 = 0$$

これより，$x^2 + ax^2 + bx + 10$ は $x^2 - 6x + 10$ で割り切れる。

右の計算により商と余りが求まる。

$$(x^2 - 6x + 10) \div (x^2 + ax^2 + bx + 10)$$

$$(a + 6)x^2 + (b - 10)x + 10$$

$$(a + 6)x^2 - 6(a + 6)x + 10(a + 6)$$

これを解くと $a = 5, b = 4$

よって $x^2 - 5x^2 + 4x + 10 = (x^2 - 6x + 10)(x + (5 + 6))$

$$=(x^2 - 6x + 10)(x + 1) = 0$$

したがって $a = 5, b = 4, \text{他の解は} x = 3 + i, -1$

\[\text{別解} 1\]

$x = 3 - i$ を方程式 $x^2 + ax^2 + bx + 10 = 0$ に代入する。

$$(3 - i)^3 + a(3 - i)^2 + b(3 - i) + 10 = 3^3 - 3 \cdot 3^2 \cdot i + 3 \cdot 3 \cdot i^2 - i^3 + a(9 - 6i + i^2) + 3b - bi + 10$$

$$= 27 - 27i - 9 + 9a - 6ai - a + 3b - bi + 10 = 8a + 3b + 28 + (-6a - b - 26)i = 0$$

$$\begin{cases} 8a + 3b + 28 = 0 \\ -6a - b - 26 = 0 \end{cases}$$

これを解くと $a = 5, b = 4$

方程式 $x^2 - 5x^2 + 4x + 10 = 0$ を解くと $x = -1, 3 + i$

したがって $a = 5, b = 4, \text{他の解は} x = -1, 3 + i$

\[\text{別解} 2\]

この方程式は $x = 3 + i$ も解にもつ。 $a = 3 - i, \quad \beta = 3 + i, \quad x = 3 \pm i$ 以外の解を γ とおき，

3 次方程式の解と係数の関係を用いる。

$$\begin{align*}
(3-i)(3+i) + \gamma &= -a \quad \cdots (1) \\
(3-i)(3+i) + (3+i)\gamma + \gamma(3-i) &= b \quad \cdots (2) \\
(3-i)(3+i)\gamma &= -10 \quad \cdots (3)
\end{align*}$$

3によると $10\gamma = -10$ よって $\gamma = -1$

1によると $6 - 1 = -a$ よって $a = -5$

2によると $10 - (3-i) - (3+i) = b$ よって $b = 4$

以上より $a = -5, b = 4, \text{他の解は} x = 3 + i, -1$