空間のベクトル

【練習問題】空間のベクトル

1
次の問いに答えよ。

(1) ① 右の図の直方体 OABC-DEFG について,
    点 A, B, F, G の座標を求めよ。
    ② 点 P(−1, 2, −4)と, xy 平面, z 軸, 原点に関して対称な点の座標を求めよ。

(2) 次の 2 点間の距離を求めよ。
    ① A(1, −2, −3), B(−1, −5, 3)
    ② O(0, 0, 0), P(−1, 2, −4)
平行六面体 $ABCD$-$EFGH$ において，$\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AD} = \vec{b}$, $\overrightarrow{AE} = \vec{c}$ とするとき，$\overrightarrow{HF}$, $\overrightarrow{CE}$ を，それぞれ $\vec{a}$, $\vec{b}$, $\vec{c}$ を用いて表せ。
練習問題

空間のベクトル

3

(1) $\vec{a}=(1, -2, -3), \vec{b}=(-1, -5, 3)$ のとき，$-3 \vec{a} + 4 \vec{b}$ を成分で表せ。また，その大きさを求めよ。

(2) $\vec{a}=(1, -2, -3), \vec{b}=(-1, -5, 3), \vec{c}=(0, -4, -1)$ のとき，$\vec{p}=(1, 0, 1)$ を $\vec{p} = s \vec{a} + t \vec{b} + u \vec{c}$ の形で表せ。
4

2点A(−3, 2, −4), B(1, −2, 3)とするとき, \( \overrightarrow{AB} \) に平行で, 大きさが3のベクトル \( \overrightarrow{p} \) を求めよ。
次の問いに答えよ。

(1) 1 辺の長さが 1 の正四面体 OABC において，
内積 $\vec{OA} \cdot \vec{CA}$ を求めよ。

(2) $\vec{a} = (1, 4, 9), \vec{b} = (-8, 3, 5)$ のとき，内積 $\vec{a} \cdot \vec{b}$ を求めよ。
また，$\vec{a}, \vec{b}$ のなす角 $\theta$ を求めよ。

(3) $\vec{a} = (1, 4, 9), \vec{b} = (-8, 3 + 4x, 5-x)$ が垂直であるとき，$x$ の値を求めよ。
6
3点 O(0, 0, 0), A(−3, 2, −4), B(1, −2, 3)を頂点とする三角形の面積 S を求めよ。
四面体 OABC があり、△OAB の重心を G, 辺 OC を 4:1 に内分する点を D, 線分 GD を 5:3 に外分する点を E とする。

$$\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c}$$ とするとき，
$$\overrightarrow{OE}$$ を \(\vec{a}, \vec{b}, \vec{c}\) を用いて表せ。
三角柱 ABC-DEF において、辺 EF の中点を M とし、△CDE の重心を G とするとき、3 点 A, G, M は一直線上にあることを証明せよ。
四面体 ABCD において, \( AB = AC, \ BD = CD \) とするとき, \( AD \perp BC \) であることを, ベクトルを用いて証明せよ。
次の問いに答えよ。

(1) 点 $A(-3, 2, -4), B(3, 2, -1), C(2, 0, 4), P(x, 4, -6)$が同一平面上にあるとき，$x$ の値を求めよ。

(2) 四面体 $OABC$において，辺 $OA$, $OB$, $OC$の中点を $E$, $F$, $G$, 辺 $BC$ を 2：1に内分している点を $H$ とし，直線 $EH$と平面 $AFG$の交点を $I$とする。

$$\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c}$$とするとき，$\overrightarrow{OI}$を$\vec{a}$, $\vec{b}$, $\vec{c}$を用いて表せ。
次の問いに答えよ。
(1) 点 A(−3, 2, −4)を通る次のような平面の方程式を，それぞれ求めよ。
① x 軸に垂直 ② y 軸に垂直 ③ xy 平面に平行
(2) 点 A(−3, 2, −4)を中心とし，半径が 5 の球面の方程式を求めよ。
研究1

(1) 点A(−3, 2, −4)を通り、次のベクトル\( \vec{u} \)を方向ベクトルとする直線の方程式を求めよ。

① \( \vec{u} = (1, -2, 3) \)
② \( \vec{u} = (3, 2, 0) \)

(2) 2点(−3, 2, −4), (1, −2, 3)を通る直線の方程式を求めよ。

(3) 2直線\( l_1 : \frac{x-7}{4} = \frac{y+5}{5} = z-8 \), \( l_2 : \frac{x-3}{3} = \frac{y-2}{2} = z-5 \)のなす角\( \theta \)を求めよ。

ただし、\( 0^\circ \leq \theta \leq 90^\circ \)とする。
研究2
次の問いに答えよ。
(1) 点 A(−3, 2, −4)を通し、法線ベクトルが \( \vec{n} = (1, -2, 3) \)である平面の方程式を求めよ。
(2) 点(−3, 2, −4)と平面 3x + 2y − z − 6 = 0 の距離 \( h \)を求めよ。