分数関数，無理関数，逆関数，合成関数

1

(1) 次の関数のグラフの漸近線を求め，そのグラフをかけ。

① $y = \frac{2}{x+1} - 3$
② $y = \frac{3x-7}{x-2}$

(2) 2つの関数 $y = \frac{1}{x} - 2$, $y = -2x + 1$ について，次の問いに答えよ。

① 2つの関数のグラフの共有点の座標を求めよ。
② グラフを利用して，不等式 $\frac{1}{x} - 2 \geq -2x + 1$ を解け。

解答
(1) ① 漸近線は，2直線 $x = -1$, $y = -3$

グラフは右の図のようになる。

② $\frac{3x-7}{x-2} = \frac{3(x-2) + 6 - 7}{x-2} = \frac{-1}{x-2} + 3$

よって，与えられた関数は

$y = -\frac{1}{x-2} + 3$ と変形できる。

したがって，漸近線は

2直線 $x = 2$, $y = 3$

グラフは右の図のようになる。
（2） ① $\frac{1}{x} - 2 = -2x + 1$ 両辺にxを掛けて $1 - 2x = x(-2x + 1)$

展開して整理すると $2x^2 - 3x + 1 = 0$ よって $(x-1)(2x-1) = 0$

これを解くと $x = 1, \frac{1}{2}$

$y = -2x + 1$ に$x = 1$ を代入すると $y = -1$ $x = \frac{1}{2}$ を代入すると $y = 0$

したがって共有点の座標は $(1, -1), (\frac{1}{2}, 0)$

② 関数 $y = \frac{1}{x} - 2$ と直線 $y = -2x + 1$ のグラフは右の図のようになる。

求める不等式の解は，$y = \frac{1}{x} - 2$ のグラフが直線 $y = -2x + 1$ より上側，または共有点をもつ部分に対する x の値の範囲であるから

$0 < x \leq \frac{1}{2}, \ 1 \leq x$
2

(1) 次の関数のグラフをかけ。
① \(y = -\sqrt{-3x} \)
② \(y = \sqrt{2x + 2} \)

(2) 2 つの関数 \(y = \sqrt{-3x + 4}, \ y = -x \) について，次の問いに答えよ。
① 2 つの関数のグラフの共有点の座標を求めよ。
② グラフを利用して，不等式 \(\sqrt{-3x + 4} > -x \) を解け。

\[\text{解答} \]

(1) ① グラフは右の図のようになる。

\[\text{2} \]

② 与えられた関数は \(y = \sqrt{2(x + 1)} \) と変形できる。
よって，グラフは右の図のようになる。

(2) ① \(\sqrt{-3x + 4} = -x \cdots (*) \)
両辺を 2 乗すると \(-3x + 4 = (-x)^2 \)

\[x^2 + 3x - 4 = 0 \quad (x + 4)(x - 1) = 0 \] これを解くと \(x = -4, 1 \)

\(x = -4 \) は(*)を満たす。

\(x = 1 \) は(*)を満たさない。
よって，共有点の座標は \((-4, 4) \)

② 関数 \(y = \sqrt{-3x + 4} \) と直線 \(y = -x \) のグラフは右の図のようになる。
求める不等式の解は， \(y = \sqrt{-3x + 4} \) のグラフが直線 \(y = -x \) より上側にある部分に対する

\(x \) の値の範囲であるから \(-4 < x \leq \frac{4}{3} \)
3

(1) 次の関数の逆関数を求めよ。

① \(y = -\frac{1}{3}x + 1 \) ② \(y = 2x - 3 \ (0 \leq x \leq 4) \) ③ \(y = \frac{9x - 2}{x - 1} \) ④ \(y = (x - 1)^2 \ (x \geq 1) \)

(2) 次の関数の逆関数のグラフをかけ。

① \(y = \left(\frac{1}{2}\right)^x \) ② \(y = -\log_3 x \)

解答

(1) ① \(x \)について解くと，\(\frac{1}{3}x = -y + 1 \) から \(x = -3y + 3 \)

逆関数は，\(x \)と\(y \)を入れかえて \(y = -3x + 3 \)

② この関数の値域は \(-3 \leq y \leq 5 \) また，\(x \)について解くと，\(-2x = -y - 3 \) から \(x = \frac{1}{2}y + \frac{3}{2} \)

逆関数は，\(x \)と\(y \)を入れかえて \(y = \frac{1}{2}x + \frac{3}{2} \ (-3 \leq x \leq 5) \)

③ 両辺に \(x - 1 \)を掛けると，\((x - 1)y = 9x - 2 \) から \(xy - y = 9x - 2 \)

\[xy - 9x = y - 2 \quad x(y - 9) = y - 2 \quad \cdots (\ast) \]

ここで，\(y = \frac{9x - 2}{x - 1} = \frac{9(x - 1) + 7}{x - 1} = \frac{7}{x - 1} + 9 \) より，直線 \(y = 9 \) は漸近線であるから \(y \neq 9 \)

\((\ast)\)の両辺を \(y - 9 \)で割ると \(x = \frac{y - 2}{y - 9} \) 逆関数は，\(x \)と\(y \)を入れかえて \(y = \frac{x - 2}{x - 9} \)

④ この関数の値域は \(y \geq 0 \)

\(y = (x - 1)^2 \)かから \(x - 1 = \pm \sqrt{y} \)

\(x \geq 1 \) であるかから \(x = 1 + \sqrt{y} \)

逆関数は，\(x \)と\(y \)を入れかえて

\(y = \sqrt{x} + 1 \)

関数 \(y = \sqrt{x} + 1 \) のグラフは，関数 \(y = \sqrt{x} \) のグラフを \(y \) 軸方向に 1だけ平行移動したもの。
(2) ① \(x \) について解くと \(x = \log_{1/2} y = \frac{\log_2 y}{1/2} = -\log_2 y \)
逆関数は， \(x \) と \(y \) を入れかえて \(y = -\log_2 x \)
逆関数のグラフは右の図のようになる。

② 両辺を底が 3 の対数で表すと
\[\log_3 3^y = \log_3 \frac{1}{x} \]
よって \(\frac{1}{x} = 3^y \)
\(x \) について解くと \(x = \frac{1}{3^y} = \left(\frac{1}{3}\right)^y \)
逆関数は， \(x \) と \(y \) を入れかえて \(y = \left(\frac{1}{3}\right)^x \)
逆関数のグラフは右の図のようになる。
(1) \(f(x) = |x+1|, \ g(x) = 2^x, \ h(x) = \sin x \) とする。次の問いに答えよ。
① \((g \circ f)(x), \ (f \circ g)(x)\) を求めよ。
② \((h \circ (g \circ f))(x), \ ((h \circ g) \circ f)(x)\) を求めよ。

(2) \(f(x) = \frac{3}{x+2} \) の逆関数を求めよ。また、\((f \circ f^{-1})(x), \ (f^{-1} \circ f)(x)\) をそれぞれ求めよ。

\[f(x) = \frac{3}{x+2} \]

\[f^{-1}(x) = \frac{3}{x} - 2 \]

間数 \(f(x) = \frac{3}{x+2} \) の定義域は \(x \neq -2 \)，値域は \(f(x) \neq 0 \) であることに注意する。